TOPICS IN ANALYTIC NUMBER THEORY EXERCISE SHEET 3

- (1) (Tensor power trick of Deligne/Langlands.) Let H be a finite set. For each integer $q \geqslant 1$, let P_q be a finite set. For each $x \in P_q$, let $\alpha_x \colon H \to \mathbb{C}$ be a function.
 - (a) For each $x \in P_q$ and integer $k \ge 1$, prove that the power series

$$f_{x,k}(T) := \prod_{(h_1,\dots,h_{2k})\in H^{2k}} \frac{1}{1 - \alpha_x(h_1)\overline{\alpha}_x(h_2)\cdots\alpha_x(h_{2k-1})\overline{\alpha}_x(h_{2k})T} \in \mathbb{C}[[T]]$$

has non-negative real coefficients. (Hint: Write $1/(1-t) = \exp(\sum_{r\geq 1} t^r/r)$.)

(b) Let $\sum_{n\geqslant 1} a_k(n) n^{-s}$ be the series obtained by formally expanding the product

$$\prod_{q\geqslant 1}\prod_{x\in P_q}f_{x,k}(q^{-s}).$$

Suppose $\sum_{n\geqslant 1} a_k(n) n^{-2}$ converges for all k. Prove that $|\alpha_x(h)| \leqslant 1$ for all $x \in P_q$ and $h \in H$. (*Hint*: Use (a) and the fact that $f_{x,k}(|\alpha_x(h)|^{-2k}) = \infty$.)
(2) (Poisson summation in $(\mathbb{Z}/r\mathbb{Z}) \times \mathbb{R}$.) Let $r \geqslant 1$ be an integer. Let $w_r : \mathbb{Z}/r\mathbb{Z} \to \mathbb{C}$

be a function and let $w_{\infty} \colon \mathbb{R} \to \mathbb{C}$ be a Schwartz function. Prove that

$$\sum_{n\in\mathbb{Z}} w_r(n)w_{\infty}(n) = \sum_{m\in\mathbb{Z}} \hat{w}_r(m/r)\hat{w}_{\infty}(m/r),$$

where $\hat{w}_{\infty}(m/r) := \int_{\mathbb{R}} w_{\infty}(t) \exp(-2\pi i m t/r) dt$ is the usual Fourier transform, and where

$$\hat{w}_r(m/r) := \frac{1}{r} \sum_{a \in \mathbb{Z}/r\mathbb{Z}} w_r(a) \exp(2\pi i m a/r).$$

(*Hint*: Apply the usual Poisson summation formula to integers $n \equiv a \mod r$.)

(3) Let \mathbb{F}_q be a finite field of order $q=p^r$, where p is prime and $r\geqslant 1$ is an integer. Let

$$\operatorname{Tr}(x) := \sum_{j=0}^{r-1} x^{p^j} \in \mathbb{F}_p$$

for $x \in \mathbb{F}_q$. Let ζ_p be a primitive pth root of unity in \mathbb{C} . Prove that if $x \in \mathbb{F}_q$, then

$$\frac{1}{q} \sum_{a \in \mathbb{F}_q} \zeta_p^{\text{Tr}(ax)} = \mathbf{1}_{x=0}.$$

(Hint: The map Tr: $\mathbb{F}_q \to \mathbb{F}_p$ is \mathbb{F}_p -linear and surjective.)

(4) Let A be an $N \times N$ Hankel matrix with complex entries, where $N \ge 2$. Let B be the $N \times (N-1)$ sub-matrix given by deleting the last column of A. Let C be the $(N-1)\times(N-1)$ sub-matrix of B given by deleting the last row of B. Prove that

$$rank(B) \leq max(rank(A) - 1, N - 2, rank(C)).$$

(*Hint*: First handle the case where rank(A) = N. If rank $(A) \leq N - 1$, then choose a non-zero column vector $X \in \mathbb{C}^N$ with AX = 0, and do casework on whether the last coordinate of X is zero or not.)

¹This means the entries of A are given by $A_{ij} = f(i+j)$ for $1 \le i, j \le N$, for some function $f: \mathbb{Z} \to \mathbb{C}$. In other words, the skew diagonals of A are constant.