TOPICS IN ANALYTIC NUMBER THEORY EXERCISE SHEET 2

- (1) Let $k \ge 2$ be an integer. Compute the probability that there is no integer $m \ge 2$ such that m^k divides n.
- (2) Compute the probability that two integers n_1 and n_2 are coprime. Hint: take the corresponding Bernoulli random variables on $\{1, \ldots, N\} \times \{1, \ldots, N\}$ and take their limit as $N \to \infty$.
- (3) Let $\Omega(n)$ be the number of prime divisors of an integer $n \ge 1$, counted with multiplicity (e.g. $\Omega(12) = 3$). Let \mathbb{P}_N denote the uniform probability measure on $\{1, \ldots, N\}$. Prove that

$$\mathbb{P}_N\left(\Omega(n) - \omega(n) \ge (\log \log N)^{1/4}\right) \le (\log \log N)^{-1/4},$$

and deduce, assuming Erdös–Kac Theorem for $\omega(n)$, that the random variables

$$X_N: \{1, \dots, N\} \to \mathbb{R}$$
 $n \mapsto \frac{\Omega(n) - \log \log N}{\sqrt{\log \log N}}$

also converges in law to Normal(0,1) as $N \to \infty$.

(4) For any integer $N \ge 1$, let m(N) denote the set of integers that occur in the multiplication table for integers $1 \le n \le N$:

$$m(N) = \{ab : a, b \in \mathbb{Z}, \ 1 \leq a \leq N, \ 1 \leq b \leq N\} \subset \{1, \dots, N^2\}.$$

Prove that

$$\frac{\#m(N)}{N^2} \to 0$$

as $N \to \infty$. You may assume Erdös–Kac Theorem for $\Omega(n)$ (as obtained in the previous question).